A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

نویسندگان

  • A. Ghomashi Department of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, ‎Iran.
  • M. Abbasi Department of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, ‎Iran.
چکیده مقاله:

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global convergence of the proposed neural network is proved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

متن کامل

A NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS

Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...

متن کامل

A Recurrent Neural Network for Solving Complex-Valued Quadratic Programming Problems with Equality Constraints

A recurrent neural network is presented for solving systems of quadratic programming problems with equality constraints involving complex-valued coefficients. The proposed recurrent neural network is asymptotically stable and able to generate optimal solutions to quadratic programs with equality constraints. An opamp based analogue circuit realization of the recurrent neural network is describe...

متن کامل

Discrete neural network for solving general quadratic programming problems

Abstract: Quadratic programming problems are widespread class of nonlinear programming problems with many practical applications. The case of inequality constraints have been considered in a previous author’s paper. Later on an extension of these results for the case of inequality and equality constraints has been proposed. Based on equivalent formulation of Kuhn-Tucker conditions, a new neural...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره 4

صفحات  339- 347

تاریخ انتشار 2018-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023